Publications
[1]李爱农, 边金虎, 靳华安, 等. 山地遥感[M]. 北京: 科学出版社, 2016. [2]李爱农, 雷光斌, 边金虎, 等.山地土地利用/覆被遥感监测[M]. 北京:科学出版社, 2021. [3]Li Ainong, Deng Wei, Zhao Wei. Land Cover Change and Its Eco-Environmental Response in Nepal[M]. Singapore, Springer-Nature, 2017. [4] 邓伟,李爱农(副主编), 南希, 陈昱, 廖克. 中国数字山地图[M]. 北京: 中国地图出版社, 2015. [5] 邓伟,李爱农(副主编). 南亚地理—资源与环境[M].成都:四川科技出版社,2017. [6]李爱农*, 边金虎, 张正健, 等. 山地遥感主要研究进展、发展机遇与挑战[J]. 遥感学报, 2016, 20(5): 1199-1215. [7]李爱农*, 边金虎, 张正健, 等. 若尔盖高原区域碳收支参量多尺度遥感综合观测试验:科学目标与试验设计[J]. 遥感技术与应用, 2016, 31(3): 405-416. [8]李爱农*, 尹高飞, 靳华安, 等. 山地地表生态参量遥感反演的理论、方法与问题[J]. 遥感技术与应用, 2016, 31(1): 1-11. [9]李爱农*, 边金虎, 尹高飞, 等. 山地典型生态参量遥感反演建模及其时空表征能力研究[J]. 地球科学进展, 2018, 33(2): 141-151. [10]李爱农*,尹高飞,张正健,等. 基于站点的生物多样性星空地一体化遥感监测[J]. 生物多样性, 2018,26(08): 819-827. [11]李爱农*, 张正健, 雷光斌, 等. 四川芦山“4·20”强烈地震核心区灾损遥感快速调查与评估[J]. 自然灾害学报, 2013, 22(6): 8-18. [12]李爱农*, 南希, 张正健, 等. 茂县“6.24”特大高位远程崩滑灾害遥感回溯与应急调查[J]. 自然灾害学报, 2018, 27(2):1-9. [13]李爱农*, 南希, 张正健,等. 特大山地灾害遥感应急响应调查方法与案例[J]. 中国减灾, 2018,(19): 42-45. [14] Hu, G. andLi, A.*. SGOT: A Simplified Geometric-Optical Model for Crown Scene Components Modeling over Rugged Terrain [J]. Remote Sensing , 2022, 14(8): 1821. [15] Naboureh, A.,Li, A.*, Ebrahimy, H., et al. Assessing the effects of irrigated agricultural expansions on Lake Urmia using multi-decadal Landsat imagery and a sample migration technique within Google Earth Engine [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102607. [16] Jin, Y.,Li, A.*, Bian, J., et al. Spatiotemporal analysis of ecological vulnerability along Bangladesh-China-India-Myanmar economic corridor through a grid level prototype model [J]. Ecological Indicators, 2021, 120: 106933. [17] Xie, X. andLi, A.*. An Adjusted Two-Leaf Light Use Efficiency Model for Improving GPP Simulations Over Mountainous Areas [J]. Journal of Geophysical Research: Atmospheres, 2021, 125(13): e2019JD031702. [18] Xie, X. andLi, A.*. Development of a topographic-corrected temperature and greenness model (TG) for improving GPP estimation over mountainous areas [J]. Agricultural and Forest Meteorology, 2020, 295: 108193. [19] Bian, J.,Li, A.*, Lei, G., et al. Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 63-76. [20] Lei, G.,Li, A.*, Bian, J., et al. OIC-MCE: A Practical Land Cover Mapping Approach for Limited Samples Based on Multiple Classifier Ensemble and Iterative Classification [J]. Remote Sensing, 2020, 12(6): 987. [21] Jin, H.,Li, A.*, Xu, W., et al. Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 176-188. [22] Jin, H.,Li, A.*, Yin, G., et al. A Multiscale Assimilation Approach to Improve Fine-Resolution Leaf Area Index Dynamics [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8153-8168. [23] Tan, J.,Li, A.*, Lei, G., et al. A novel and direct ecological risk assessment index for environmental degradation based on response curve approach and remotely sensed data [J]. Ecological Indicators, 2019, 98:783-793. [24] Tan, J.,Li, A.*, Lei, G., et al. A SD-MaxEnt-CA model for simulating the landscape dynamic of natural ecosystem by considering socio-economic and natural impacts [J]. Ecological Modelling, 2019, 410: 108783. [25]Li, A.*, Deng, W., Zhao, W., et al. A geo-spatial database about the eco-environment and its key issues in South Asia [J]. Big Earth Data, 2018, 2(3): 298-319. [26] Xie, X.,Li, A.*, Yin, G., et al. Derivation of temporally continuous leaf maximum carboxylation rate (Vcmax) from the sunlit leaf gross photosynthesis productivity through combining BEPS model with light response curve at tower flux sites [J]. Agricultural and Forest Meteorology, 2018, 259:82-94, [27] Bian, J.,Li, A.*, Huang, C., et al. A self-adaptive approach for producing clear-sky composites from VIIRS surface reflectance datasets [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 189-201. [28] Zhao, W., Sánchez, N., Lu H. andLi, A.*. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression [J]. Journal of Hydrology, 2018, 563: 1009-1024. [29] Yin, G.,Li, A.*, Wu, S., et al. PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction [J]. Remote Sensing of Environment, 2018, 215:184-198. [30] Bian, J.,Li, A.*, Zhang, Z., et al. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1 A/B constellation images and an adaptive endmember selection LSMM model [J]. Remote Sensing of Environment, 2017, 197: 98-114. [31] Yin, G.,LI, A.*, Zhao, W., et al. Modeling Canopy Reflectance Over Sloping Terrain Based on Path Length Correction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4597 - 4609. [32] Yin, G.,Li, A.*, Jin, H., et al. Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO [J]. Agricultural and Forest Meteorology, 2017, 233(2017): 209-221. [33] Zhao, W.,Li, A.*, Zhao, T. Potential of Estimating Surface Soil Moisture With the Triangle-Based Empirical Relationship Model [J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(11): 6494-6504. [34] Zhao, W.,Li, A.*, Jin, H., et al. Performance Evaluation of the Triangle-Based Empirical Soil Moisture Relationship Models Based on Landsat-5 TM Data and In Situ Measurements [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2632-2645. [35] Tan, J.,Li, A.*, Lei, G., et al. Preliminary assessment of ecosystem risk based on IUCN criteria in a hierarchy of spatial domains: A case study in Southwestern China [J]. Biological Conservation, 2017, 215(2017): 152-161. [36] Lei, G.,Li, A.*, Bian, J., et al. Land Cover Mapping in Southwestern China Using the HC-MMK Approach [J]. Remote Sensing, 2016, 8(4): 305. [37] Wang, J.,Li, A.*, Bian, J. Simulation of the Grazing Effects on Grassland Aboveground Net Primary Production Using DNDC Model Combined with Time-Series Remote Sensing Data—A Case Study in Zoige Plateau, China [J]. Remote Sensing, 2016, 8(3): 168. [38] Bian, J.,Li, A.*, Wang, Q., et al. Development of Dense Time Series 30-m Image Products from the Chinese HJ-1A/B Constellation: A Case Study in Zoige Plateau, China [J]. Remote Sensing, 2016, 7(12): 16647-16671. [39] Jin, H.,Li, A.*, Wang, J., et al. Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data [J]. European Journal of Agronomy, 2016, 78(2016): 1-12. [40] Yin, G.,Li, A.*, Zeng, Y., et al. A cost-constrained sampling strategy in support of lai product validation in mountainous areas [J]. Remote Sensing, 2016, 8, 704. [41]Li, A.*, Wang, Q., Bian, J., et al. An Improved Physics-Based Model for Topographic Correction of Landsat TM Images [J]. Remote Sensing, 2015, 7(5): 6296-6319. [42]Li, A.*, Zhao, W., Deng, W. A Quantitative Inspection on Spatio-Temporal Variation of Remote Sensing-Based Estimates of Land Surface Evapotranspiration in South Asia [J]. Remote Sensing, 2015, 7(4): 4726-4752. [43]Li, A.*, Zhang, W., Lei, G., et al. Comparative Analysis on Two Schemes for Synthesizing the High Temporal Landsat-like NDVI Dataset Based on the STARFM Algorithm [J]. ISPRS International Journal of Geo-Information, 2015, 4(3): 1423-1441. [44]Li, A.*, Deng, W., Kong, B., et al. A study on wetland landscape pattern and its change process in Huang-Huai-Hai (3H) area, China [J]. Journal of Environmental Informatics, 2013, 21(1): 23-34. [45]Li, A.*, Liang, S., Wang, A., et al. Investgating the impacts of the North Atlantic Oscillation on global vegetation changes by a remotely sensed vegetation index. International Journal of Remote Sensing [J], 2012, 33(22): 7222-7239. [46]Li, A.*, Jiang, J., Bian, J., et al. Combining the matter element model with the associated function of probability transformation for multi-source remote sensing data classification in mountainous regions [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67(1): 80-92. [47]Li, A.*, Bian, J., Lei, G., et al. Estimating the maximal light use efficiency for different vegetation through the CASA model combined with time-series remote sensing data and ground measurements [J]. Remote Sensing, 2012, 4(12): 3857-3876. [48]Li, A., Huang, C., Sun, G., et al. Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data [J]. Remote sensing of Environment, 2011, 115(8): 1837-1849. [49]Li, A.*, Deng, W., Liang, S., et al. Investigation on the patterns of global vegetation change using a satellite-sensed vegetation index [J]. Remote Sensing, 2010, 2(6): 1530-1548. [50]Li, A.*, Liang, S., Wang, A., et al. Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques [J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(10): 1149-1157. [51]Li, A.*, Wang, A., Liang, S., et al. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS - A case study in the upper reaches of Minjiang River, China [J]. Ecological Modelling, 2006, 192(1-2): 175-187.
|