Name 

Wenzhi WANG 

    

Professional  

Title 

Professor 

Address  

No. 9, Block 4, Renminnanlu Road, Chengdu, 610041, People’s Republic of China 

E-mail 

wzwang@imde.ac.cn 

Professional  

Expertise 

Tree ring stable isotope and global biology change

Education 

1.2012.9~2015.7, PhD. State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou.

2. 2009.9~2012.7, M.S, State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou.

3.2005.9~2009.7, B.S, Linyi Normal University, Linyi.

Employment Record (including international working experience ) 

2020.11~Present, Professor, Institute of Mountain Hazards and Environment, CAS, Chengdu China

2017.7~2020.9, Postdoctoral researcher, Pacific Northwest National Laboratory, Richland, WA, USA (work with Nate G. McDowell)

2016.12~2017.4, Postdoctoral researcher, Los Alamos National Laboratory, Los Alamos, NM, USA, (work with Nate G. McDowell)

2015.7~2019.8, Assistant research fellow, Institute of Mountain Hazards and Environment, CAS, Chengdu, China.

Running Projects 

1. 2020.11-2023.11, Talents Program of Chinese Academy of Sciences. Mountain forest response to climate change in Southwestern China, (PI)

2. 2020.1-2023.12, National Natural Science Foundation of China (Grant no. 41977396). Mechanism of climate change in the dieback of Three-North Shelter Forest based on tree-ring multi-proxies records, (PI)

Academic Society Activities 

Reviewer for New Phytologist, Agricultural and Forest Meteorology, Science of the Total Environment, Tree Physiology, Forest Ecology and Management, Climate Dynamics, Climatic Change, Plos One, Science Bulletin, Trees, Journal of Mountain Science, etc.

 

 

 

Awards 

The BHP Billiton Scholarship of the University of Chinese Academy of Science, 2014
The Zhu Liyuehua Excellent Doctoral Award, CAS 2014
National Scholarship for Graduate Students in China, 2013
Excellent Prize of the President Scholarship, CAS 2012

 

 

Publications  


[1]Wang W.*, N. McDowell, X. Liu*, G. Xu, G. Wu, X. Zeng, G. Wang, (in press). Contrasting growth responses of Qilian juniper (Sabina przewalskii) and Qinghai spruce (Picea crassifolia) to CO2 fertilization despite common water-use efficiency increases at northeastern Qinghai-Tibetan Plateau. Tree Physiology. 10.1093/treephys/tpaa169.
[2]Wang, W.*, N. B. English, C. Grossiord, A. Gessler, A. J. Das, N. L. Stephenson, C. H. Baisan, C. D. Allen, N. G. McDowell, (2021). Mortality predispositions of conifers across Western USA. New Phytologist. 229(2): 831-844.
[3]Wang, W.*, McDowell, N.G., Pennington, S., Grossiord, C., Leff, R.T., Sengupta, A., Ward, N.D., Sezen, U.U., Rich, R., Megonigal, J.P., Stegen, J.C., Bond-Lamberty, B., Bailey, V., (2020). Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest. Agricultural and Forest Meteorology 295, 108163.
[4]Wang, W.*, N. G. McDowell, N. D. Ward, J. Indivero, C. Gunn, and V. Bailey (2019), Constrained tree growth and gas-exchange of seawater exposed forests in the Pacific Northwest, USA. Journal of Ecology, 107(6), 2541-2552.
[5]Wang, W., X. Liu*, G. Xu, K. Treydte, X. Shao, D. Qin, G. Wang, and N. G. McDowell (2019), CO2 fertilization confounds tree ring records of regional hydroclimate at northeastern Qinghai-Tibetan Plateau, Earth and Space Science, 6, 730-740.
[6]Ahkami, A. H.*, Wang, W., Wietsma, T. W., Winkler, T., Lange, I., Jansson, C., et al. (2019). Metabolic shifts associated with drought-induced senescence in Brachypodium. Plant Science, 289, 110278.
[7]Ward, N. D., J. Indivero, C. Gunn, W. Wang, V. Bailey, and N. G. McDowell (2019), Longitudinal gradients in tree stem greenhouse gas concentrations across six Pacific Northwest coastal forests, Journal of Geophysical Research: Biogeosciences, 0(0), doi:10.1029/2019jg005064.
[8]Shu, S., W. Zhu, W. Wang, M. Jia, Y. Zhang, and Z. Sheng (2019), Effects of tree size heterogeneity on carbon sink in old forests, Forest Ecology and Management, 432, 637-648.
[9]Grossiord, C., S. Sevanto, D. Bonal, I. Borrego, T. E. Dawson, M. Ryan, W. Wang, and N. G. McDowell (2019), Prolonged warming and drought modify belowground interactions for water among coexisting plants, Tree Physiology, 39(1), 55-63, doi:10.1093/treephys/tpy080.39, 55-63.
[10]Xu, G., X. Liu, S. Belmecheri, T. Chen, G. Wu, B. Wang, X. Zeng, and W. Wang (2018), Disentangling Contributions of CO2 Concentration and Climate to Changes in Intrinsic Water-Use Efficiency in the Arid Boreal Forest in China’s Altay Mountains, Forests, 9(10), 642.
[11]Xu, G., X. Liu, W. Sun, T. Chen, X. Zhang, X. Zeng, G. Wu, W. Wang, and D. Qin (2018), Application and verification of simultaneous determination of cellulose δ13C and δ18O in Picea shrenkiana tree rings from northwestern China using the high-temperature pyrolysis method, Journal of Arid Land, 10(6), 864-876, doi: 10.1007/s40333-018-0070-6.
[12]Zhang, X., X. Liu, W. Wang, T. Zhang, X. Zeng, G. Xu, G. Wu, and H. Kang (2018), Spatiotemporal variability of drought in the northern part of northeast China, Hydrological Processes, 32(10), 1449-1460.
[13]An, W., X. Liu, S. Hou, X. Zeng, W. Sun, W. Wang, Y. Wang, G. Xu, and J. Ren (2018), Unstable relationships between tree ring δ18O and climate variables over southwestern China: possible impacts from increasing central Pacific SSTs, Theoretical and Applied Climatology, 136(1-2), 391-402, doi:10.1007/s00704-018-2483-8.
[14]Xu, G., X. Liu, V. Trouet, K. Treydte, G. Wu, T. Chen, W. Sun, W. An, W. Wang, X. Zeng and D. Qin (2018), Regional drought shifts (1710–2010) in East Central Asia and linkages with atmospheric circulation recorded in tree-ring δ18O, Climate Dynamics, 52, 713-727.
[15]Wu, G., X. Liu, S. Kang, T. Chen, G. Xu, X. Zeng, W. Wang, B. Wang, X. Zhang, and H. Kang (2018), Age-dependent impacts of climate change and intrinsic water-use efficiency on the growth of Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountains, China, Forest Ecology and Management, 414, 1-14.
[16]Zhang, X., X. Liu, Q. Zhang, X. Zeng, G. Xu, G. Wu, and W. Wang (2018), Species-specific tree growth and intrinsic water-use efficiency of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) growing in a boreal permafrost region of the Greater Hinggan Mountains, Northeastern China, Agricultural and Forest Meteorology, 248, 145-155.
[17]Wang, W., M. Jia, G. Wang, W. Zhu, and N. G. McDowell (2017), Rapid warming forces contrasting growth trends of subalpine fir (Abies fabri) at higher- and lower-elevations in the eastern Tibetan Plateau, Forest Ecology and Management, 402, 135-144
[18]Zeng, X., X. Liu, K. Treydte, M. N. Evans, W. Wang, W. An, W. Sun, G. Xu, G. Wu, and X. Zhang (2017), Climate signals in tree-ring δ18O and δ13C from southeastern Tibet: insights from observations and forward modelling of intra- to interdecadal variability, New Phytologist, 216(4), 1104-1118.
[19]Liu, X., X. Zhang, L. Zhao, G. Xu, L. Wang, W. Sun, Q. Zhang, W. Wang, X. Zeng, and G. Wu (2017), Tree ring δ18O reveals no long-term change of atmospheric water demand since 1800 in the northern Great Hinggan Mountains, China, Journal of Geophysical Research: Atmospheres, 122(13), 6697-6712.
[20]Wang, W., X. Liu, G. Xu, X. Zeng, G. Wu, X. Zhang, and D. Qin (2016), Temperature signal instability of a tree-ring δ13C chronology in the northeastern Qinghai–Tibetan Plateau, Global and Planetary Change, 139, 165-172.
[21]Zeng, X., X. Liu, M. N. Evans, W. Wang, W. An, G. Xu, and G. Wu (2016), Seasonal incursion of Indian Monsoon humidity and precipitation into the southeastern Qinghai–Tibetan Plateau inferred from tree ring values with intra-seasonal resolution, Earth and Planetary Science Letters, 443, 9-19.
[22]Wang, B., T. Chen, G. Xu, X. Liu, W. Wang, G. Wu, and Y. Zhang (2016), Alpine timberline population dynamics under climate change: a comparison between Qilian juniper and Qinghai spruce tree species in the middle Qilian Mountains of northeast Tibetan Plateau, Boreas, 45(3), 411-422.
[23]Wang, W., X. Liu, X. Shao, D. Qin, G. Xu, B. Wang, X. Zeng, G. Wu, and X. Zhang (2015), Differential response of Qilian juniper radial growth to climate variations in the middle of Qilian Mountains and the northeastern Qaidam Basin, Climatic Change, 133(2), 237-251.
[24]Liu, X., W. An, K. Treydte, W. Wang, G. Xu, X. Zeng, G. Wu, B. Wang, and X. Zhang (2015), Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China, Science of The Total Environment, 511(0), 584-594.
[25]Wu, G., X. Liu, T. Chen, G. Xu, W. Wang, X. Zeng, and X. Zhang (2015), Elevation-dependent variations of tree growth and intrinsic water-use efficiency in Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountains, China, Frontiers in Plant Science, 6, doi: 10.3389/fpls.2015.00309.
[26]Xu, G., X. Liu, G. Wu, T. Chen, W. Wang, Q. Zhang, Y. Zhang, X. Zeng, D. Qin, W. Sun and X. Zhang (2015), Tree ring δ18O's indication of a shift to a wetter climate since the 1880s in the western Tianshan Mountains of northwestern China, Journal of Geophysical Research: Atmospheres, 120(13), 6409-6425.
[27]Wu, G., X. Liu, T. Chen, G. Xu, W. Wang, X. Zeng, B. Wang, and X. Zhang (2015), Long-term variation of tree growth and intrinsic water-use efficiency in Schrenk spruce with increasing CO2 concentration and climate warming in the western Tianshan Mountains, China, Acta Physiol Plant, 37(8), 150.
[28]Liu, X., W. Wang, G. Xu, X. Zeng, G. Wu, X. Zhang, and D. Qin (2014), Tree growth and intrinsic water-use efficiency of inland riparian forests in northwestern China: evaluation via δ13C and δ18O analysis of tree rings, Tree Physiology, 34(9), 966-980.
[29]Liu, X., W. An, S. W. Leavitt, W. Wang, G. Xu, X. Zeng, and D. Qin (2014), Recent strengthening of correlations between tree-ring δ13C and δ18O in mesic western China: Implications to climatic reconstruction and physiological responses, Global and Planetary Change, 113(0), 23-33.
[30]Liu, X., G. Xu, J. Grie?inger, W. An, W. Wang, X. Zeng, G. Wu, and D. Qin (2014), A shift in cloud cover over the southeastern Tibetan Plateau since 1600: evidence from regional tree-ring δ18O and its linkages to tropical oceans, Quaternary Science Reviews, 88(0), 55-68.
[31]Xu, G., X. Liu, D. Qin, T. Chen, W. Wang, G. Wu, W. Sun, W. An, and X. Zeng (2014), Tree-ring δ18O evidence for the drought history of eastern Tianshan Mountains, northwest China since 1700 AD, International Journal of Climatology, 34(12), 3336-3347.
[32]Xu, G., X. Liu, D. Qin, T. Chen, W. Wang, G. Wu, W. Sun, W. An, and X. Zeng (2014), Relative humidity reconstruction for northwestern China’s Altay Mountains using tree-ring δ18O, Chinese Science Bulletin, 59(2), 190-200.
[33]Zeng, X., X. Liu, W. Wang, G. Xu, W. An, and G. Wu (2014), No altitude-dependent effects of climatic signals are recorded in Smith fir tree-ring δ18O on the southeastern Tibetan Plateau, despite a shift in tree growth, Boreas, 43(3), 588-599.
[34]Zeng, X., X. Liu, G. Xu, W. Wang, and W. An (2014), Tree-ring growth recovers, but δ13C and δ15N do not change, after the removal of point-source air pollution: a case study for poplar (Populus cathayana) in northwestern China, Environmental Earth Sciences, 72(6), 2173-2182.
[35]Xu, G., X. Liu, D. Qin, T. Chen, W. Sun, W. An, W. Wang, G. Wu, X. Zeng, and J. Ren (2014), Drought history inferred from tree ring δ13C and δ18O in the central Tianshan Mountains of China and linkage with the North Atlantic Oscillation, Theoretical and Applied Climatology, 116(3-4), 385-401.
[36]An, W., X. Liu, S. W. Leavitt, G. Xu, X. Zeng, W. Wang, D. Qin, and J. Ren (2014), Relative humidity history on the Batang–Litang Plateau of western China since 1755 reconstructed from tree-ring δ18O and δD, Climate Dynamics, 42(9-10), 2639-2654.
[37]Wang, W., X. Liu, G. Xu, X. Shao, D. Qin, W. Sun, W. An, and X. Zeng (2013), Moisture variations over the past millennium characterized by Qaidam Basin tree-ring δ18O, Chinese Science Bulletin, 58(32), 3956-3961.
[38]Wu, G., G. Xu, T. Chen, X. Liu, Y. Zhang, W. An, W. Wang, Z.-a. Fang, and S. Yu (2013), Age-dependent tree-ring growth responses of Schrenk spruce (Picea schrenkiana) to climate—A case study in the Tianshan Mountain, China, Dendrochronologia, 31(4), 318-326.
[39]Liu, X., X. Zeng, S. W. Leavitt, W. Wang, W. An, G. Xu, W. Sun, Y. Wang, D. Qin, and J. Ren (2013), A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: implications for inferring variations of the regional hydroclimate, Global and Planetary Change, 104(0), 23-33..
[40]Xu, G., X. Liu, D. Qin, T. Chen, W. An, W. Wang, G. Wu, X. Zeng, and J. Ren (2013), Climate warming and increasing atmospheric CO2 have contributed to increased intrinsic water-use efficiency on the northeastern Tibetan Plateau since 1850, Trees, 27(2), 465-475.
[41]Wang, W. Z., X. H. Liu, W. L. An, G. B. Xu, X. M. Zeng (2012). Increased intrinsic water-use efficiency during a period with persistent decreased tree radial growth in northwestern China: causes and implications. Forest Ecology and Management. 275(0), 14-22.
[42]An W. L, X. H. Liu, W. S. Leavitt, W. Z. Sun, W. Z. Wang, Y. Wang, G. B. Xu, T. Chen, J. W. Ren, D. H. Qin (2012). Specific climatic signals recorded in earlywood and latewood δ18O of tree rings in southwestern China. Tellus-B, 64, 18703.
[43]Wang, W., X. Liu, X. Shao, S. Leavitt, G. Xu, W. An, and D. Qin (2011), A 200-yr temperature record from tree-ring δ13C at the Qaidam Basin of the Tibetan Plateau after identifying the optimum method to correct for changing atmospheric CO2 and δ13C, J. Geophys. Res., 116, G04022, doi:10.1029/2011JG001665.
[44]Xu, G. B., T. Chen, X. H. Liu, W. L. An, W. Z. Wang, H. B. Yun (2011), Potential Linkages between the moisture variability on the northeastern Qaidam Basin, China Since 1800AD and the East Asian summer monsoon as reflected by tree-ring δ18O, J. Geophys. Res., 116, D09111, doi:10.1029/2010JD015053.
[45]Liu XH, W. L. An, E. Y. Liang, W. Z. Wang, X. M. Shao, L. Huang, D. H. Qin (2011). Spatiotemporal variability in tree ring’s δ13C of Picea crassifolia in the Qilian Mountains: climatic significance and responses to rising CO2. Science in Arid and Cold Regions 3(2), 93-102.
[46]Xu, G. B., T. Chen, X. H. Liu, L. Y. Jin, W. L. An, and W. Z. Wang (2011), Summer temperature variations recorded in tree-ring δ13C values on the northeastern Tibetan Plateau, Theor. Appl. Climatol., 105, 51-63.